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Motivation & Goals Autoencoder-based Anomaly Detection

Autoencoders are a type of neural network that reconstructs the input data.
They consist of an encoder and a decoder. By training an autoencoder only on
data without anomalies, the model learns to encode and reconstruct normal
behavior only. The autoencoder will fail to reconstruct anomalous input data
correctly, resulting in a large reconstruction error (RE).
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ARCANA — Anomaly Root Cause Analysis

®m Highly complex blackbox models are used for anomaly detection in wind
turbines, making it hard to interpret detected anomalies.

B Explainable Al (XAl) is needed to identify underlying root causes of anomalies.

®m Interpretable anomalies can be used to improve the models and in turn
reduce false positives and increase recall.

m CIA helps to identity modeling issues regarding anomaly concepts. The
method shows which kind of anomalies can be detected and which cannot.

® ARCANA provides human interpretable explanations of detected anomalies.
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CIA — Concept-based Interpretable Anomaly Detection
B Autoencoder models have proven to be very successful in detecting anomalous

behavior in wind turbine sensor data, yet cannot show the underlying cause
directly. Such information is necessary for the implementation of these models
in the planning of maintenance actions.

B For this problem, a novel method for autoencoder-based anomaly detection

B Use Explainable Al methods to identity which concepts Al-based methods

nave learned for detecting anomalies in performance time series

B Demonstrate the usability of concept-based XAl methods for anomaly
detection in time series data.

Data root cause analysis — ARCANA — was developed.
B As a first approach data quality flags were used as anomaly concepts. B ARCANA is an optimization algorithm that identifies only a few, but highly
B As asecond experiment, concept vectors were formed using an AE-based explanatory anomalous features.
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Figure 1. Concept of the TCAV and evaluation

Conclusion
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B The functionality of the TCAV method for time series could be shown.

B However, the TCAV method is only conditionally suitable for unsupervised
anomaly detection algorithms.

B Deriving concepts from the already detected anomalies is only partially
useful. (It can be shown that certain concepts are harder to learn.)

B A possible approach here could be to check concepts for normal behavior

with experts.
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reconstruction errors do not explain this anomaly, whereas ARCANA attributes
more importance to the water conductivity, which directly influences the converter

water conductance.
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